Autonomic Imbalance Predicts the Development of Metabolic Syndrome

Lawson Wulsin, M.D.
University Of Cincinnati, Cincinnati VAMC
American Psychosomatic Society
Miami 3/15/13
Co-Authors

- Paul S. Horn, Ph.D., University of Cincinnati
- Jennifer L. Perry, Ph.D., Cincinnati VAMC
- Joe Massaro, Ph.D., Boston University
- Ralph D’Agostino, Ph.D. Boston University

Acknowledgements: Robert Carney, Ph.D., Robert M. Cohen, M.D., Neil Richtand, M.D., Anil Menon, Ph.D., James Herman, Ph.D., and John Morrison, Ph.D.
None of the authors have any disclosures or conflicts of interest to report.

Funded in part by the Veterans Administration Research Initiative Program, VISN 10, 2011
Background

- obesity, diabetes, CAD share common (rarely treated) mechanism: autonomic imbalance

autonomic imbalance:
- too much sympathetic tone
- too little parasympathetic tone

- metabolic syndrome is a precursor condition for obesity, diabetes, and CAD
Background

- **metabolic syndrome (MetS) definition:**
 - high fasting glucose
 - high triglycerides
 - low HDL
 - high blood pressure
 - high waist circumference

- affects 1/3 of U.S. population
- increased rates of CAD, DM II, mortality
- avg annual cost increase of 24% per MetS component
Debate

- Does “metabolic syndrome” add any public health value beyond the sum of its parts?
- Reaven (2010), one of the early definers of the syndrome, does not think so...
Autonomic Imbalance

- sympathetic overactivity, parasympathetic underactivity
- only mechanism associated with all 8 major CAD risk factors
- measurable, treatable
- predictive?
Associational Evidence

- Licht, CM (2010):
 - in large Dutch community sample, baseline autonomic imbalance (HR and HRV), but not HPA axis, related to MetS
 - dose-response relationship relative to number of components of MetS

- Gehi, AK (2009): Twins Heart Study
 - in 288 twins, controlling for genes and environment, MetS associated with low HRV
 - each additional component of MetS assoc with lower HRV
Predictors of MetS

Franco, OH (2009): Framingham Heart Study

- FHS Offspring (N=3078)
- 1980’s, 10 yr f/u
- prevalence of MetS doubled: 23.5% to 40.6%
- Does first condition predict development of MetS?
 - central obesity conferred the highest risk (OR 4.75)
 - in women, HBP tended to be first condition
 - in men, low HDL tended to be first condition
Hypothesis

- Autonomic imbalance at baseline will significantly increase the odds of developing MetS within 12 years.
Participants

- FHS Offspring cohort (first enrolled 1971-75)
- complete “baseline” visit 3 data (1983-87) for
 - EKG (resting heart rate/RHR)
 - 2-hour Holter monitor (heart rate variability/HRV)
 - MetS measures
- 18 or older at baseline
- N=1882
- excluded: MetS at baseline (539), incomplete f/u (197)
- final sample N=1143
Participant Selection

Offspring cohort
N=1882

Baseline MetS?

Yes
N=539

No
N=1342

Unknown
N=1

MetS at 4-, 8- and/or 12-Year Follow-Up?

"Ever"
N=504

"Never"
N=641

Unknown
N=197

N=1145

Sample Used
N=1143

Baseline smoking data missing
N=2
Measures

- autonomic imbalance
 - RHR from EKG
 - HRV from 2-hr Holter monitor, the SD of beat-to-beat interval (SDNN)
Measures

<table>
<thead>
<tr>
<th>Metabolic Syndrome Component</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Elevated triglycerides</td>
<td>$\geq 150\text{mg/dL (1.7 mmol/L)}$ or drug treatment for elevated triglycerides</td>
</tr>
<tr>
<td>(2) Lowered high-density lipoprotein</td>
<td>$< 40\text{mg/dL (1.0 mmol/L)}$-Male / $< 50\text{mg/dL (1.3 mmol/L)}$-Female</td>
</tr>
<tr>
<td>cholesterol (HDL-C)</td>
<td>or drug treatment for lowered HDL-C</td>
</tr>
<tr>
<td>(3) Elevated blood pressure</td>
<td>systolic $\geq 130\text{mm Hg}$ and/or diastolic $\geq 85\text{mm Hg}$ or antihypertensive drug treatment for hypertension</td>
</tr>
<tr>
<td>(4) Elevated fasting glucose</td>
<td>$\geq 100\text{mg/dL}$ or drug treatment for elevated glucose</td>
</tr>
</tbody>
</table>
| (5) Increased waist circumference* | $> 102\text{cm – males}$
 | $> 88\text{cm – females}$ |

*Because waist circumference (WC) was not available at baseline, we substituted Body Mass Index (BMI) for this component and used the cutoff of ≥ 25.
Analyses

- secondary analysis
- logistic regression model
 - [backward elimination variable selection](#)
- predictor variables: RHR, HRV
- covariates: age, gender, cigarettes/day, depressive sx (CESD)
- outcome variables: MetS status at any time after baseline (4-, 8-, 12- yr f/u)
Results

- sample characteristics at baseline (N = 1143)
 - mean age 46.6 ± 9.9
 - females 57%
 - cigarettes/day 5.6 ± 11.5
 - RHR (bpm) 64.4 ± 9.9
 - SDNN (msec) 0.099 ± 0.027
Results

- best model:
 - MetS predicted by HRV (SDNN)
 - age
 - gender
 - smoking

 AUR = 0.665
 Hosmer Lemeshow Goodness-of-fit p value = 0.73
Results

- 1 SD of decrease in HRV increased the odds of developing MetS within 12 yrs by 43% (95% CI 30%-57%, p<0.001)
- for each 1 yr increase in age, the odds of MetS increased by 2.2% (95% CI 1.4%-2.9%, p<0.001)
Results

- for each additional cigarette smoked per day, the odds of MetS increased by

 1.8% (95% CI 0.8%-3.0%, p<0.005)

- for males (vs. females) the odds of MetS was higher by

 2.2x (95% CI 1.73-2.83., p<0.001)
Results

Predicted Probability of Metabolic Syndrome
mean age=46.59 mean cigarettes=5.62

Probability

HRV SDNN

Gender Female Male
Results

- without HRV, RHR was significant predictor:
- for each increase in RHR by 10 bpm, the odds of MetS increased by

 24% (95% CI 9.4%-42%, p<0.001)

- effect of gender and smoking similar to HRV model, but effect of age in RHR model was somewhat greater
Discussion

- first report of evidence that autonomic imbalance predicts the development of MetS in a community sample
- as HRV drops by half, risk for MetS doubles
- 1 SD decrease in HRV is equal to the effect of
 - 16 additional years
 - nearly 1 ppd of cigarettes
- effect of HRV on risk for MetS may be as important as age and smoking
Discussion

- RHR also proved to be an independent predictor of MetS, though not as strong as HRV
 - not yet clear why

- Limitations
 - sample Caucasian, middle aged, middle class
 - no analyses yet on duration of autonomic imbalance
 - HRV based on 2-hr Holter (not 24-hr)
 - no data on insulin resistance, physical activity, inflammation, which may influence this relationship
Implications

- initial proof of concept
- support for prospective observational study of new high risk group:
 - high RHR, low HRV
 - 1-2 metabolic risks
- support for potential prevention intervention trials:
 - Does correcting autonomic imbalance reduce the risk for MetS?